个人信息

姓名:彭振华

国籍:中国

联系电话:15870605317

导师类型:硕士生导师

性别:

毕业院校:武汉大学

学位:博士

email:zhenhuapeng@whu.edu.cn

所在单位:数学与计算机学院

职称:副教授

学科:理学

办公地址:理生楼A509、B729

姓名拼音:peng zhen hua

论文成果

论文


  • Lv J, Peng Z, Wan Z. Approximate Karush-Kuhn-Tucker condition for multi-objective optimistic bilevel programming problems[J]. Journal of Industrial and Management Optimization, 2023.

  • Lv J, Peng Z, Wan Z. Optimality Conditions, Qualifications and Approximation Method for a Class of Non-Lipschitz Mathematical Programs with Switching Constraints[J]. Mathematics, 2021, 9(22): 2915.

  • Zhenhua Peng*, Zhongping Wan, Yujia Guo. New higher-order weak lower inner epiderivatives and application to Karush–Kuhn–Tucker necessary optimality conditions in set-valued optimization. Japan Journal of Industrial and Applied Mathematics, 2020, 37: 851-866.

  • Zhenhua Peng*, Zhongping Wan. Second-order composed contingent derivative of the perturbation map in multiobjective optimization. Asia-Pacific Journal of Operational Research, 2020, 37: 2050002.

  • Chao Jiang, Zhongping Wan, Zhenhua Peng*. A new efficient hybrid algorithm for large scale multiple traveling salesman problems. Expert Systems with Applications, 2020, 139: 112867.

  • YANG J, WAN Z, PENG Z. Hybrid Krill Herd Algorithm with Vortex Search for Global Numerical Optimization[J]. Wuhan University Journal of Natural Sciences, 2020.

  • Wang Y, Wan Z, Peng Z. A novel improved bird swarm algorithm for solving bound constrained optimization problems[J]. Wuhan University Journal of Natural Sciences, 2019, 24(4): 349-359.

  • 孙源, 彭振华, 万仲平. 不确定环境下绿色竞争型闭环供应链的模糊定价模型[J]. 科技与经济, 2019, 32(2): 101-105.

  • 卢蒙卡, 万仲平, 彭振华. 新的求解多层规划的直觉模糊交互式决策模型[J]. 计算机工程与应用, 2019, 55(16): 42-48.

  • Zhenhua Peng* and Zhongping Wan, Second-Order Karush-Kuhn-Tucker Optimality Conditions for Set-Valued Optimization Subject to Mixed Constraints, Results in Mathematics, 2018. 73: 101.

  • Zhenhua Peng and Yihong Xu*, Second Order Optimality Conditions for Conesubarcwise Connected Set-valued Optimization Problems, Acta Mathematicae Applicatae Sinica, English Series, 2018, 34: 183–196.

  • Yihong Xu and Zhenhua Peng*, Second-Order M-Composed Tangent Derivative and Its Applications, Asia-Pacific Journal of Operational Research, 2018, DOI: 10.1142/S021759591850029X.

  • Yihong Xu and Zhenhua Peng*, Higher-Order Kuhn-Tucker Optimality Conditions for Set-Valued Optimization, Pacific Journal of Optimization, 2018, 14(2): 327–347.

  • Zhenhua Peng*, Zhongping Wan and Weizhi Xiong, Sensitivity Analysis in Set-Valued Optimization Under Strictly Minimal Efficiency, Evolution Equations and Control Theory, 2017, 6(3): 427–436.

  • Yihong Xu and Zhenhua Peng, Higher-Order Sensitivity Analysis in Set-Valued Optimization Under Henig Efficiency, Journal of Industrial and Management Optimization, 2017, 13(1): 313-327.

  • Zhenhua Peng and Yihong Xu*, New Second-Order Tangent Epiderivatives and Applications to Set-Valued Optimization, Journal of Optimization Theory and Applications, 2017 , 172(1): 128–140.

  • 徐义红, 彭振华. 一种新的二阶次梯度及其在刻画集值优化弱有效元中的应用[J]. 应用数学学报, 2017, 40(2): 204-217.

  • Xu B, Peng Z, Xu Y. Second-order lower radial tangent derivatives and applications to set-valued optimization[J]. Journal of Inequalities and Applications, 2017, 2017(1): 1-19.

  • Yihong XU, Min LI, Zhenhua PENG. A note on “Higher-order optimality conditions in set-valued optimization using Studniarski derivatives and applications to duality”[Positivity. 18, 449–473 (2014)][J]. Positivity, 2016, 20: 295-298.

  • 彭振华, 徐义红, 涂相求. 近似拟不变凸集值优化问题弱有效元的最优性条件[J]. 山东大学学报 (理学版), 2014, 49(05): 41-44.


1
第1页