姓名:王璞
国籍:中国
性别:男
毕业院校:北京科技大学
职称:教授
学位:博士
职称类别:特聘教授
电子邮件:wangpu@ncu.edu.cn
所在单位:物理与材料学院
办公地址:材料楼A312
王璞,博士,男,1994年出生,中共党员,南昌大学特聘教授。2012-2022年本、硕、博均毕业于北京科技大学,2022.09-2024.12在北京科技大学从事博士后科研工作,师从张家泉教授,2025年起在南昌大学工作。主要从事金属浇注与凝固控制技术,包括电磁冶金新技术、浇铸过程数值模拟仿真与产品质量控制、轧材带状缺陷形成机理与控制研究、冶金反应器设计研究及Fe基非晶带材/粉末与高频低损耗软磁材料成型机理与控制等。主持国家自然科学基金及企业横向课题10余项、其中百万以上课题4项,作为主要参与人成功获批山东省重点研发计划(8260万)。紧密围绕产学研用,近5年以第一作者/通讯作者发表SCI检索论文50余篇(16 h-index),以第一发明人身份授权发明专利13项、实用新型4项,获2023年度机械工业科学技术奖(科技进步奖)一等奖、2025年度有色金属工业科技进步二等奖。
[1] 2016.09-2022.06 北京科技大学 博士研究生
[2] 2012.09-2016.06 北京科技大学 本科
[1] 2022.09-2024.12 北京科技大学 冶金与生态工程学院
[2] 2025.01-至今 南昌大学 物理与材料学院
非晶带冶炼炉吹氩工艺优化研究
一种基于破碎模式预测的雾化生产顺行控制方法
非晶带喷包结构与优化研究
还蒸炉装置结构与生产工艺优化研究
连铸坯表层物相行为控制技术
大规格立式连铸圆坯偏析控制
放电等离子液相烧结制备铁基非晶磁粉芯及其性能调控
板坯连铸电磁搅拌工艺优化研究
铁基球形非晶磁粉气水联合雾化工艺优化研究
Fe基超细粉水、气雾化工艺及装置研发
平流铸造熔潭、薄带成型及冷却优化研究
代表性学术论文(中科院二区及以上论文)
[1] Wang P, Feng W, Zhang J, et. al. Structural optimization of single-strand crucible for planar flow casting: simulation and application study. Physics of Fluids, 2025, 37: 063318.
[2] Wang P, Liu J, Zhang J, et. al. Investigation on close-coupled gas atomization for Fe-based amorphous powder production via simulation and industrial trials: Part II. Particle flight and cooling during secondary atomization. Journal of Materials Research and Technology, 2023, 26: 9480.
[3] Wang P, Liu J, Zhang J, et. al. Breakup process modeling and production of FeSiAl magnetic powders by close-coupled gas atomization. Journal of Materials Research and Technology, 2023, 23: 730.
[4] Wang P, Zhu Z, Zhang J, et. al. Industrial-scale fabrication of FeSiBC cores with balanced soft magnetic properties by transverse magnetic field annealing and mixing of carbonyl iron powder. Journal of Alloys and Compounds, 2024, 977: 173381.
[5] Wang P, Zhu Z, Zhang J, et. al. Industrial-scale fabrication of FeSiCr magnetic powder cores with high magnetic permeability and low loss. Journal of Alloys and Compounds, 2023, 962: 171095.
[6] Wang P, Liu J, Zhang J, et. al. Industrial-scale fabrication of amorphous magnetic powder cores with excellent high-frequency magnetic properties: Optimization for kinds and content of insulating agents. Journal of Non-Crystalline Solids, 2023, 605: 122082.
[7] Wang P, Wei M, Zhang J, et. al. Crystallization evolution behavior of amorphous Fe85.7Si7.9B3.6Cr2C0.8 powder produced by a novel atomization process. Journal of Non-Crystalline Solids, 2022, 594: 121824.
[8] Wang P, Tang H, Zhang J, et. al. Improved In-Mold Metallurgical Behavior for Slab Casting of IF Steels by a Novel Multi-Poles Electromagnetic Stirring. Metallurgical and Materials Transactions B, 2022, 53: 1691.[9] Wang P, Tang H, Zhang J, et. al. Influence of Dual-Channel Induction Heating Coil Parameters on the Magnetic Field and Macroscopic Transport Behavior in T-Type Tundish. Metallurgical and Materials Transactions B, 2021, 52(5): 3447.
[10] Wang P, Cheng L, Zhang J, et. al. Propagation form of internal cracks induced by continuous casting soft reduction and control strategy for internal quality. Journal of Iron and SteelResearch International, 2024, 31: 622.
[11] Wang P, Xiao H, Zhang J, et. al. Effect of channel diameter on magneto-thermal conversion ratio and consistency of each strand in a multi-strand induction heating tundish. Journal of Iron and Steel Research International, 2023, 30: 1199.
[12] Chen X, Wang P*, Zhang J. Evaluation of the Adaptability of the Dual-Port Channel in Induction Heating Tundish. Metallurgical and Materials Transactions B, 2025.
[13] Chen X, Wang P*, Xiao H, et. al. Dual optimization of the geometric design and inductor parameters of the induction heating tundish based on numerical simulations. Journal of Materials Research and Technology, 2023, 24: 1410.
[14] Chen X, Wang P*, Zhang J, et. al. New electromagnetic variable flow device for slab continuous casting mold: mechanical design and magnetic field analysis. Journal of Iron and Steel Research International, 2024, 31:2710-2726.
[15] Liu J, Li B, Wang P*, et al. Optimization of the gas system for gas–water combined atomization technique in FeSiBC amorphous powder production. Physics of Fluids, 2024, 36: 073317.
[16] Liu J, Wang P*, Zhang J, et al. Investigation on close-coupled gas atomization for Fe-based amorphous powder production via simulation and industrial trials: Part I. Melt breakup behaviors during primary atomization. Journal of Materials Research and Technology, 2023, 27: 6568.
[17] Liu J, Dong Y, Wang P*, et. al. Improved high-frequency magnetic properties of FeSiBCCr amorphous soft magnetic composites by adding carbonyl iron powders. Journal of Non-Crystalline Solids, 2023, 605:122166. (ESI高被引)
[18] Liu J, Wang P*, Zhang J, et al. FeSiBCCr bulk metallic glasses with excellent soft magnetic properties prepared using spark plasma sintering technology. Journal of Non-Crystalline Solids. 2024, 645: 123205.
[19] Liu J, Gao Y, Wang P*, et al. Structure evolution and magnetization properties of FeSiBCCr amorphous alloys prepared by spark plasma sintering. Journal of Non-Crystalline Solids, 2023, 622: 122651.
[20] Liu J, Zhu Z, Wang P*, et al. Effects of two silicone resin coatings on performance of FeSiAl magnetic powder cores. Journal of Iron and Steel Research International, 2024, 31(5): 1279.
[21] Liu J, Dong Y, Wang P*, et. al. Simulation and experiment study on the fabrication of Fe-based amorphous powders by a novel atomization process equipped with assisted gas nozzles. Journal of Iron and Steel Research International, 2023, 30(6): 1142.
[22] Zhu Z, Wang P*, Zhang J, et. al. Improving the magnetic properties of FeSiBC soft magnetic composites by flake powder orientation and mixing with FeSiBCCr fine powder. Journal of Materials Research and Technology, 2024, 33: 8519.
[23] Geng H, Chang Y, Wang P*, et al. Insight into effect of forced convection during slab casting on as-cast solidification structure. Journal of Iron and Steel Research International, 2024: 1.
[24] Wang H, Zhang Z, Wang P*, et al. Soft reduction control investigation of spot segregation in continuous casting bloom for 42CrMoA crankshaft steel. Journal of Iron and Steel Research International, 2025, 32: 695.
[25] Wang H, Zhang Z, Wang P*, et al. Controlling segregation and hardenability of gear steel based on as-cast structure. Journal of Iron and Steel Research International, 2025, 32: 144.
授权发明专利情况
[1] 第一发明人,发明专利CN 116644688 B,一种基于破碎模式预测的雾化生产顺行控制方法。
[2] 第一发明人,发明专利CN 117030410 B,一种超薄金属材料金相样品的制备方法。
[3] 第一发明人,发明专利CN 116904831 B,一种 Fe-Si-B 基大块非晶合金制备方法及材料。
[4] 第一发明人,发明专利CN 116992794 B,一种雾化非晶粉末收得率计算方法及应用。
[5] 第一发明人,发明专利CN 117174424 B,一种电感用高性能合金磁体及制备方法。
[6] 第一发明人,发明专利CN 116738518 B,一种连铸轻压下裂纹位置的数值模拟验证方法及内部质量控制方法。
[7] 第一发明人,发明专利CN 117226059 B,改善高碳低合金钢宏观和半宏观偏析的压下控制方法。
[8] 第一发明人,发明专利CN 117548638 B,用于改善棒材带状缺陷和力学性能的方法及凸轮轴。
[9] 第一发明人,发明专利CN 115509266 B,一种快速反应调节熔体流量的控制装置、控制方法及其应用。
[10] 第一发明人,发明专利CN 116833399 B,一种钢连铸感应加热中间包及其控制方法。
[11] 第一发明人,发明专利CN 1198899 B,一种铁基非晶复合磁粉芯及制备方法。
[12] 第一发明人,发明专利CN 119864112 B,一种热塑性预测模型、方法、电子设备或存储介质。
[13] 第一发明人,发明专利CN 119187485 B,一种用于改善齿轮钢棒材淬透性的方法及齿轮钢棒材。