个人信息

姓名:刘志明

国籍:中国

导师类型:硕士生导师

性别:

毕业院校:南京航空航天大学

学位:博士

email:zhimingliu@ncu.edu.cn

所在单位:信息工程学院

职工类别:教学科研型

职称:副教授

学科:工学

办公地址:信工楼A606B

职称级别:高级

姓名拼音:liu zhi ming

所在系:电子信息工程系

基本信息

刘志明,博士,南昌大学信息工程学院副教授,首届香樟育才入选者。2019年获南京航空航天大学电子信息工程学院工学博士学位,2019年获得国家公派留学资格,随后进入加拿大维多利亚大学做博士后研究员。主要研究方向包括:光和射频混合智能系统,电磁超材料器件设计与应用,微波组件与系统设计,天线设计。近几年在IEEE Transactions on Antennas and Propagation、Journal of Systems Engineering and Electronics、Applied Computational Electromagnetics Society Journal等国际期刊发表多篇论文,至今已在国际权威期刊和会议发表学术论文30余篇。

教育经历

[1] 201509-201912 南京航空航天大学 博士研究生

[2] 201209-201506 南昌大学 硕士研究生

[3] 200809-201207 东华理工大学 大学本科

工作履历

科研项目

基于电磁超表面结构的多功能平面阵列天线研究

神经网络指导的液态基超材料天线多维性能重构研究

融合神经网络的天线多性能智能调控技术研究

液态RCS可重构低散射天线设计

科研成果

论著:

[1] 孔祥鲲,刘志明,卞博锐,刘少斌著.新型电磁超材料及其在低散射天线中的应用[B],电子工业出版社. (国标书号:ISBN 978-7-121-44076-2)


期刊论文:

[1] Zhiming Liu, Jens Bornemann, Deisy Formiga Mamedes, et al. A Wideband Fabry-Pérot Antenna With Enhanced Gain in the High-Frequency Operating Band by Adopt ing a Truncated Field Correcting Structure, IEEE Transactions on Antennas and Propagation, 2021, 69(12): 8221-8228. (SCI, Top期刊论文)

[2] Zhiming Liu, Shaobin Liu, et al. Wideband Gain Enhancement and RCS Reduction of Fabry-Perot Antenna Using Hybrid Reflection Method. IEEE Transactions on Antennas and Propagation, April 2020. (SCI, Top期刊论文)

[3] Zhiming Liu, Jens Bornemann, et al. Investigations and prospects of Fabry-Perot antennas: A review, Journal of Systems Engineering and Electronics, 2021, 32(4): 731- 747. (邀稿,SCI期刊论文)

[4] Zhiming Liu, Shaobin Liu, Jens Bornemann, Zhao, X., et al. A low-RCS, high-GBP Fabry–Perot antenna with embedded chessboard polarization conversion metasurface. IEEE Access, 2020, 8, 80183-80194. (SCI期刊论文)

[5] Zhiming Liu, Shaobin Liu, et al. High-gain Wideband Fabry-Perot Resonator Antenna Based on Single-layer FSS Structure. Applied Computational Electromagnetics Society Journal. Vol. 34, No. 6, pp. 898-903, June 2019.  (SCI期刊论文)

[6] Zhiming Liu, Shaobin Liu, et al. Gain Enhancement of Circularly polarized antenna with Dual-Polarization Conversion Transmitarray. International Journal of RF and Microwave Computer-Aided Engineering, e21669, 2019.  (SCI期刊论文)

[7] Zhiming Liu, Shaobin Liu, et al. Metasurface-Based Low-Profile High-Gain Substrate-Integrated Fabry-Pérot Cavity Antenna. International Journal of RF and Microwave Computer-Aided Engineering, e21583, 2018.  (SCI期刊论文)

[8] Qun Xu, Zhiming Liu, Shaobin Liu, et al, Jianghong Qin. Wideband Low Profile Multi-Polarization Reconfigurable Antenna with Quasi-cross-shaped Coupling Slot. Applied Computational Electromagnetics Society Journal, 35(3), 331-337, 2020.  (SCI期刊论文)

[9] Yukun Zou, Xiangkun Kong, ... , He Wan, Zhiming Liu, Yongjiu Zhao, Jens Bornemann, et al. A Slot Antenna Array with Reconfigurable RCS Using Liquid Absorber. IEEE Transactions on Antennas and Propagation, 2022.(SCI, Top期刊论文)

[10] Rong Li, Xiang-kun Kong, Shao-bin Liu, Zhi-ming Liu, Yu-meng Li. Planar metamaterial analogue of electromagnetically induced transparency for a miniature refractive index sensor. Physics Letters A, 383(32), 125947, Nov. 2019. (JCR 2 区, SCI, IF: 2.278)

[11] Yu Y K, Liu Z M, Zhou H L, et al. A dual‐polarized wideband gain enhancement Fabry–Perot antenna by adopting a wedge‐shaped phase correcting structure[J]. International Journal of RF and Microwave Computer‐Aided Engineering, 2022: e23434.

[12] Siyuan Yang; Fei Wang; Zhe Zhang; Zhiming Liu; Jiliang Zhang; Kaiyong Jiang, Effect of Ball-Milling Process on Microwave Absorption Behaviors of Flaky Carbonyl Iron Powders. Materials 2023, 16(12), 4397; https://doi.org/10.3390/ma16124397.

[13] Chen W, Liu Z, Zhou H, et al. A two‐dimensional beam steering Fabry–Pérot antenna employing a liquid‐based reconfigurable metasurface[J]. IET Microwaves, Antennas & Propagation, 2023. (SCI期刊论文)


会议论文:

[1] Y. Wang, Z. Liu, H. Zhou, Y. Wang and Z. Wang, "Wideband High-gain Fabry-Pérot Antenna with Polarization- and RCS-reconfigurable Employing Water-based FSS," 2023 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Qingdao, China, 2023, pp. 1-3, doi: 10.1109/ICMMT58241.2023.10277075.

[2] J. Yan, Z. Liu, H. Zhou, Y. Wang and Z. Wang, "Wideband Fabry-Perot antenna with gain controllable adopts temperature control method," 2023 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Qingdao, China, 2023, pp. 1-3, doi: 10.1109/ICMMT58241.2023.10276504.

[3] Y. Huang, Z. Liu, H. Zhou, Y. Wang and Z. Wang, "Dual-polarized broadband high-gain Fabry-Perot antenna with radiation pattern reconfigurable using liquid-based PRS," 2023 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Qingdao, China, 2023, pp. 1-3, doi: 10.1109/ICMMT58241.2023.10276401.

[4] H. Xu, Z. Liu, H. Zhou, Y. Wang, Z. Wang and F. Wang, "A dual-polarized Fabry-Perot antenna with ultra-wideband RCS reduction using 3D printed absorbing structure," 2023 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Qingdao, China, 2023, pp. 1-3, doi: 10.1109/ICMMT58241.2023.10277467.

[5] Chen W, Liu Z, Zhou H, et al. A Radiation Pattern Reconfigurable Low-Profile Fabry-Perot Antenna Based on Liquid Metal[C]//2022 IEEE 5th International Conference on Electronic Information and Communication Technology (ICEICT). IEEE, 2022: 651-653.

[6] Yu Y, Liu Z, Zhou H, et al. A Dual-Polarized Wideband Fabry–Perot Antenna with Enhanced Gain Using Wedge-Shaped Phase Correcting Structure[C]//2022 IEEE 5th International Conference on Electronics Technology (ICET). IEEE, 2022: 767-771.

[7] Liu F, Liu Z, Wen P. Synthesis of Unequally Spaced Linear Array with Low Sidelobe and Null Control by Using State Transition Algorithm[C]//2022 IEEE 5th International Conference on Electronic Information and Communication Technology (ICEICT). IEEE, 2022: 654-656.

[8] Liu, Z., Huang, Z., Liu, S., Kong, X., Xue, F., & Wang, L. (2019, December). A Wideband Fabry-Perot Antenna with Low-RCS High-GBP Using Embed-chessboard Polarization Conversion Metasurface. In 2019 Photonics & Electromagnetics Research Symposium-Fall (PIERS-Fall) (pp. 1645-1649). IEEE.

[9] Liu, Z., Liu, S., Kong, X., Chen, X., Liu, X., & Sun, S. (2018, November). High-Gain Low-Profile Substrate-Integrated Fabry-Perot Cavity Antenna. In 2018 Asia-Pacific Microwave Conference (APMC) (pp. 1387-1389). IEEE.

[10] Liu, Z., Liu, S., Kong, X., Huang, Z., & Bian, B. (2018, July). High-gain Wideband Fabry-Perot Resonator Antenna Based on Single-layer FSS Structure. In 2018 International Applied Computational Electromagnetics Society Symposium-China (ACES) (pp. 1-2). IEEE. 

[11] Liu, Z., Zhang, H., Liu, S., Bian, B., & Kong, X. (2017, May). An ultra-thin polarization-insensitive wide-angle metamaterial absorber. In 2017 Progress In Electromagnetics Research Symposium-Spring (PIERS) (pp. 1887-1892). IEEE.

[12] Liu, Z., Liu, S., & Zhou, H. (2016, May). Improved microwave imaging algorithm based on the second-order born approximation. In 2016 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM) (pp. 1-3). IEEE.

[13] Song, H., Zhang, Q., Liu, S., Liu, Z., Kong, X., & Zhao, X. (2019, May). Wideband High-Gain Fabry-Perot Antenna with RCS Reduction Based on Symmetric Polarization Conversion Metasurface. In 2019 IEEE 2nd International Conference on Electronics Technology (ICET) (pp. 644-647). IEEE. 

[14] Sun, S., Liu, Z., Liu, S., Pang, X., Kong, X., & Zhao, X. (2018, December). Bandwidth Enhancement and RCS Reduction for a Wideband High-Gain Fabry-Perot Antenna. In 2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE) (pp. 1-4). IEEE.

[15] Wen, Y., Liu, S., Kong, X., Yu, Q., & Liu, Z. (2018, July). Frequency and Absorptivity Reconfigurable Plasma Absorber. In 2018 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC) (pp. 1-2). IEEE.

[16] 刘志明, 周辉林, 谭思浩, 朱淦春. “TR-MUSIC 与图像熵相结合的室内多目标穿墙雷达图像重构”. 南昌大学学报: 理科版, 第 4 期, pp. 338-341, 2015. (中文核心)


专利:

[1] 孔祥鲲, 刘志明, 刘少斌. 一种介质集成高增益低剖面Fabry-Perot谐振天线. CN 108565549 A.

[2] 周辉林, 陈炜, 刘志明, 王玉皞, 王正海. 一种基于法布里珀罗谐振腔原理的天线增益放大器. CN 115588847 A.