个人信息

姓名:陈建华

国籍:中国

性别:

学位:博士

导师类型:硕士生导师

所在单位:数学与计算机学院

个人信息

陈建华,男,湖北监利人,1988年11月出生,副教授,硕士生导师,博士研究生学历,2018年博士毕业于中南大学,联系方式:cjh19881129@163.com 或 jianhuachen@ncu.edu.cn。国际差分方程学会会员、美国数学会《Mathematics Reviews》评论员,2018年7月进入到南昌大学数学系工作,2019年入选南昌大学“215人才工程”赣江青年学者。2020年获湖南省优秀博士毕业论文奖。主讲本科生《高等数学》、研究生《极小极大定理》、《线性算子谱分析》等课程。主要研究领域:非线性分析,包括变分方法与临界点理论、不动点理论及其在微分方程与积分方程中的应用。研究成果主要发表在 J. Geom. Anal.、Front. Math. China、Asymptotic Anal.、J. Math. Phys.、Z. Angew. Math. Phys.、 Acta Math. Sci. Ser. B.、Adv. Nonlinear Anal.、Topol. Meth. Nonlinear Anal.、 Commun. Pure Appl. Anal.、J. Fixed Point Theory Appl. 等国际知名期刊上。同时担任 J. Geom. Anal.、 J. Math. Phys.、 Adv. Nonlinear Anal.、 Discrete Contin. Dyn. Syst. Ser. B.、Math. Meth. Appl. Sci.、 Complex Var. Elliptic Equ.、J. Comput. Appl. Math. 等期刊审稿人。


教育经历

[1] 201509-201806 中南大学 博士研究生

[2] 201209-201506 南昌大学 硕士研究生

[3] 200809-201206 荆楚理工学院 本科

工作履历

科研项目

平面上的广义拟线性薛定谔方程驻波解的存在性与性态研究

含Choquard非线性项的广义拟线性薛定谔方程解的存在性与动力学分析

几类拟线性薛定谔方程解的存在性与动力学分析

科研成果

1、Huang Jianwen;Chen Jianhua*;  On the critical and supercritical Kirchhoff type problems with lower perturbations and steep potential well: existence and asymptotic behaviour of solutions, 2024, Printed.

2、Wang Li; Tian Liang; Chen Jianhua*;Concentration and multiple normalized solutions for a class of biharmonic Schrodinger equations; 2024, Printed.

3、Chen Jianhua; Qin Dongdong;Vicentiu D. Radulescu; Zhang Mengchun; Quasilinear Schrodinger equations  with exponential growth in R2: existence and concentration behavior of solutions, 2023, Submitted.

4、Chen Jianhua;Wen Xi; Huang Xianjiu;  Cheng Bitao; Existence and  asymptotic behaviour for the 2D-generalized quasilinear Schrodinger equations involving  Trudinger-Moser nonlinearity and potentials,   Journal of Geometric Analysis, 2023,  299: https://doi.org/10.1007/s12220-023-01357-z.

5、Chen Jianhua; Huang Xianjiu; Cheng Bitao; Combined effects of concave and convex nonlinearities for Kirchhoff type equations with steep potential well and 1<p<2<q<4, Frontiers of Mathematics,  2023, 18: 1037–1066.

6、Xiao Yingying; Zhu Chuanxi; Chen Jianhua*; Combined effects of concave and convex nonlinearities for the generalized Chern–Simons–Schrödinger systems with steep potential well and 1<p<2<q<6, Journal of Mathematical Physics, 2022, 63: 051506.

7、Chen Jianhua; Huang Xianjiu; Qin Dongdong; Cheng Bitao; Existence and asymptotic behavior of standing wave solutions for a class of generalized quasilinear Schrodinger equations with critical Sobolev exponents, Asymptotic Analysis, 2020, 120: 199-248.

8、Chen Jianhua; Huang Xianjiu; Cheng Bitao;Tang Xianhua; Existence and concentration behavior of ground State solutions for a class of generalized quasilinear Schrodinger equations in RN, Acta Mathematica Scientia Series B. 2020, 40:1495-1524.

9、Chen Jianhua; Huang Xianjiu; Cheng Bitao; Zhu Chuanxi; Some results on standing wave solutions for a class of quasilinear Schrodinger equations, Journal of Mathematical Physics, 2019, 60: 091506.

10、Chen Jianhua; Tang Xianhua; Cheng Bitao; Existence of ground state solutions for a class of quasilinear Schrodinger equations with general critical nonlinearity, Communications on Pure and Applied Analysis, 2019, 18 : 493-517.

11、Chen Jianhua; Tang Xianhua; Cheng Bitao; Existence and nonexistence of positive solutions for a class of generalized quasilinear Schrodinger equations involving a Kirchhoff-type perturbation with critical Sobolev exponent, Journal of Mathematical Physics, 2018, 59: 021505.

12、Chen Jianhua; Tang Xianhua; Cheng Bitao; Existence and concentration of ground state sign-changing solutions for Kirchhoff type equations with steep potential well and nonlinearity, Topological Methods in Nonlinear Analysis, 2018, 15:111-133.

13、Chen Jianhua; Tang Xianhua; Gao Zu; Cheng Bitao; Ground state sign-changing solutions for a class of generalized quasilinear Schrodinger equations with aKirchhoff-type perturbation, Journal of Fixed Point Theory and Applications, 2017, 19: 3127-3149.

14、Chen, Jianhua; Tang Xianhua; Gao Zu; Existence of ground state sign‐changing solutions for p‐Laplacian equations of Kirchhoff type, Mathematical Methods in the Applied Sciences, 2017, 40: 5056-5067.

15、Chen Jianhua; Tang Xianhua; Generalizations of Darbo’s fixed point theorem via simulation functions with application to functional integral equations, Journal of Computational and Applied Mathematics, 2016, 296: 564-575.